Sunday 8 May 2011

universal gates



space.gif
 












































 
Universal Gates
Universal gates are the ones which can be used for implementing any gate like AND, OR and NOT, or any combination of these basic gates; NAND and NOR gates are universal gates. But there are some rules that need to be followed when implementing NAND or NOR based gates.
  
space.gif
To facilitate the conversion to NAND and NOR logic, we have two new graphic symbols for these gates.
  
space.gif
NAND Gate
../images/digital/gates_nand_unv.gif
  
space.gif
NOR Gate
../images/digital/gates_nor_unv.gif
  
space.gif
 ../images/main/bulllet_4dots_orange.gifRealization of logic function using NAND gates
Any logic function can be implemented using NAND gates. To achieve this, first the logic function has to be written in Sum of Product (SOP) form. Once logic function is converted to SOP, then is very easy to implement using NAND gate. In other words any logic circuit with AND gates in first level and OR gates in second level can be converted into a NAND-NAND gate circuit.
  
space.gif
Consider the following SOP expression
  
space.gif
F = W.X.Y + X.Y.Z + Y.Z.W
  
space.gif
The above expression can be implemented with three AND gates in first stage and one OR gate in second stage as shown in figure.
  
space.gif
../images/digital/gates_sop.gif
  
space.gif
If bubbles are introduced at AND gates output and OR gates inputs (the same for NOR gates), the above circuit becomes as shown in figure.
  
space.gif
../images/digital/gates_sop2.gif
  
space.gif
Now replace OR gate with input bubble with the NAND gate. Now we have circuit which is fully implemented with just NAND gates.
  
space.gif
../images/digital/gates_sop3.gif
  
space.gif
 ../images/main/bulllet_4dots_orange.gifRealization of logic gates using NAND gates
  
space.gif
  
space.gif
 ../images/main/bullet_star_pink.gifImplementing an inverter using NAND gate
  
space.gif
Input
Output
Rule
(X.X)'
= X'
Idempotent
  
space.gif
../images/digital/gates_not_unv.gif
  
space.gif
 ../images/main/bullet_star_pink.gifImplementing AND using NAND gates
  
space.gif
Input
Output
Rule
((XY)'(XY)')'
= ((XY)')'
Idempotent
= (XY)
Involution
  
space.gif
../images/digital/gates_and_unv.gif
  
space.gif
 ../images/main/bullet_star_pink.gifImplementing OR using NAND gates
  
space.gif
Input
Output
Rule
((XX)'(YY)')'
= (X'Y')'
Idempotent
= X''+Y''
DeMorgan
= X+Y
Involution
  
space.gif
../images/digital/gates_or_unv.gif
  
space.gif
  
space.gif
 ../images/main/bullet_star_pink.gifImplementing NOR using NAND gates
  
space.gif
Input
Output
Rule
((XX)'(YY)')'
=(X'Y')'
Idempotent
=X''+Y''
DeMorgan
=X+Y
Involution
=(X+Y)'
Idempotent
  
space.gif
../images/digital/gates_nor_unv.gif
  
space.gif
 ../images/main/bulllet_4dots_orange.gifRealization of logic function using NOR gates
Any logic function can be implemented using NOR gates. To achieve this, first the logic function has to be written in Product of Sum (POS) form. Once it is converted to POS, then it's very easy to implement using NOR gate. In other words any logic circuit with OR gates in first level and AND gates in second level can be converted into a NOR-NOR gate circuit.
  
space.gif
Consider the following POS expression
  
space.gif
F = (X+Y) . (Y+Z)
  
space.gif
The above expression can be implemented with three OR gates in first stage and one AND gate in second stage as shown in figure.
  
space.gif
../images/digital/gates_pos1.gif
  
space.gif
If bubble are introduced at the output of the OR gates and the inputs of AND gate, the above circuit becomes as shown in figure.
  
space.gif
../images/digital/gates_pos2.gif
  
space.gif
Now replace AND gate with input bubble with the NOR gate. Now we have circuit which is fully implemented with just NOR gates.
  
space.gif
../images/digital/gates_pos3.gif
  
space.gif
 ../images/main/bulllet_4dots_orange.gifRealization of logic gates using NOR gates
  
space.gif
  
space.gif
 ../images/main/bullet_star_pink.gifImplementing an inverter using NOR gate
  
space.gif
Input
Output
Rule
(X+X)'
= X'
Idempotent
  
space.gif
../images/digital/gates_not_nor.gif
  
space.gif
 ../images/main/bullet_star_pink.gifImplementing AND using NOR gates
  
space.gif
Input
Output
Rule
((X+X)'+(Y+Y)')'
=(X'+Y')'
Idempotent
= X''.Y''
DeMorgan
= (X.Y)
Involution
  
space.gif
../images/digital/gates_and_nor.gif
  
space.gif
 ../images/main/bullet_star_pink.gifImplementing OR using NOR gates
  
space.gif
Input
Output
Rule
((X+Y)'+(X+Y)')'
= ((X+Y)')'
Idempotent
= X+Y
Involution
  
space.gif
../images/digital/gates_or_nor.gif
  
space.gif
 ../images/main/bullet_star_pink.gifImplementing NAND using NOR gates
  
space.gif
Input
Output
Rule
((X+Y)'+(X+Y)')'
= ((X+Y)')'
Idempotent
= X+Y
Involution
= (X+Y)'
Idempotent
  
space.gif
../images/digital/gates_nand_nor.gif
  
space.gif
  
space.gif
  
space.gif











No comments:

Post a Comment