Sunday 8 May 2011

algebraic manipulation



space.gif

































































../images/main/bullet_green_ball.gifAlgebraic Manipulation
  
space.gif
  
space.gif
 ../images/main/bulllet_4dots_orange.gifMinterms and Maxterms
  
space.gif
Any boolean expression may be expressed in terms of either minterms or maxterms. To do this we must first define the concept of a literal. A literal is a single variable within a term which may or may not be complemented. For an expression with N variables, minterms and maxterms are defined as follows :
  • A minterm is the product of N distinct literals where each literal occurs exactly once.
  • A maxterm is the sum of N distinct literals where each literal occurs exactly once.
For a two-variable expression, the minterms and maxterms are as follows
  
space.gif
X
Y
Minterm
Maxterm
0
0
X'.Y'
X+Y
0
1
X'.Y
X+Y'
1
0
X.Y'
X'+Y
1
1
X.Y
X'+Y'
  
space.gif
For a three-variable expression, the minterms and maxterms are as follows
  
space.gif
X
Y
Z
Minterm
Maxterm
0
0
0
X'.Y'.Z'
X+Y+Z
0
0
1
X'.Y'.Z
X+Y+Z'
0
1
0
X'.Y.Z'
X+Y'+Z
0
1
1
X'.Y.Z
X+Y'+Z'
1
0
0
X.Y'.Z'
X'+Y+Z
1
0
1
X.Y'.Z
X'+Y+Z'
1
1
0
X.Y.Z'
X'+Y'+Z
1
1
1
X.Y.Z
X'+Y'+Z'
  
space.gif
This allows us to represent expressions in either Sum of Products or Product of Sums forms
  
space.gif
 ../images/main/bullet_star_pink.gifSum Of Products (SOP)
  
space.gif
The Sum of Products form represents an expression as a sum of minterms.
  
space.gif
F(X, Y, ...) = Sum (ak.mk)
  
space.gif
where ak is 0 or 1 and mk is a minterm.
  
space.gif
To derive the Sum of Products form from a truth table, OR together all of the minterms which give a value of 1.
  
space.gif
 ../images/main/4blue_dots_bullets.gifExample - SOP
  
space.gif
Consider the truth table
  
space.gif
X
Y
F
Minterm
0
0
0
X'.Y'
0
1
0
X'Y
1
0
1
X.Y'
1
1
1
X.Y
Here SOP is f(X.Y) = X.Y' + X.Y
  
space.gif
 ../images/main/bullet_star_pink.gifProduct Of Sum (POS)
  
space.gif
The Product of Sums form represents an expression as a product of maxterms.
  
space.gif
F(X, Y, .......) = Product (bk + Mk), where bk is 0 or 1 and Mk is a maxterm.
  
space.gif
To derive the Product of Sums form from a truth table, AND together all of the maxterms which give a value of 0.
  
space.gif
  
space.gif
 ../images/main/4blue_dots_bullets.gifExample - POS
  
space.gif
Consider the truth table from the previous example.
  
space.gif
X
Y
F
Maxterm
0
0
1
X+Y
0
1
0
X+Y'
1
0
1
X'+Y
1
1
1
X'+Y'
Here POS is F(X,Y) = (X+Y')
  
space.gif
 ../images/main/bullet_star_pink.gifExercise
  
space.gif
Give the expression represented by the following truth table in both Sum of Products and Product of Sums forms.
  
space.gif
X
Y
Z
F(X,Y,X)
0
0
0
1
0
0
1
0
0
1
0
0
0
1
1
1
1
0
0
0
1
0
1
1
1
1
0
1
1
1
1
0
  
space.gif
 ../images/main/bulllet_4dots_orange.gifConversion between POS and SOP
  
space.gif
Conversion between the two forms is done by application of DeMorgans Laws.
  
space.gif
 ../images/main/bullet_star_pink.gifSimplification
As with any other form of algebra you have encountered, simplification of expressions can be performed with Boolean algebra.
  
space.gif
 ../images/main/4blue_dots_bullets.gifExample
  
space.gif
Show that X.Y.Z' + X'.Y.Z' + Y.Z = Y
  
space.gif
X.Y.Z' + X'.Y.Z' + Y.Z = Y.Z' + Y.Z = Y
  
space.gif
 ../images/main/4blue_dots_bullets.gifExample
  
space.gif
Show that (X.Y' + Z).(X + Y).Z = X.Z + Y.Z
  
space.gif
(X.Y' + Z).(X + Y).Z
= (X.Y' + Z.X + Y'.Z).Z
= X.Y'Z + Z.X + Y'.Z
= Z.(X.Y' + X + Y')
= Z.(X+Y')
  
space.gif
  
space.gif
  
space.gif

No comments:

Post a Comment