Sunday, 8 May 2011

symbolic logic















































































 
Symbolic Logic
Boolean algebra derives its name from the mathematician George Boole. Symbolic Logic uses values, variables and operations :
  
space.gif
  • True is represented by the value 1.
  • False is represented by the value 0.
Variables are represented by letters and can have one of two values, either 0 or 1. Operations are functions of one or more variables.
  • AND is represented by X.Y
  • OR is represented by X + Y
  • NOT is represented by X' . Throughout this tutorial the X' form will be used and sometime !X will be used.
These basic operations can be combined to give expressions.
  
space.gif
Example :
  
space.gif
  • X
  • X.Y
  • W.X.Y + Z
  
space.gif
 ../images/main/bulllet_4dots_orange.gifPrecedence
As with any other branch of mathematics, these operators have an order of precedence. NOT operations have the highest precedence, followed by AND operations, followed by OR operations. Brackets can be used as with other forms of algebra. e.g.
  
space.gif
X.Y + Z and X.(Y + Z) are not the same function.
  
space.gif
 ../images/main/bulllet_4dots_orange.gifFunction Definitions
The logic operations given previously are defined as follows :
  
space.gif
Define f(X,Y) to be some function of the variables X and Y.
  
space.gif
f(X,Y) = X.Y
  • 1 if X = 1 and Y = 1
  • 0 Otherwise
  
space.gif
f(X,Y) = X + Y
  • 1 if X = 1 or Y = 1
  • 0 Otherwise
  
space.gif
f(X) = X'
  • 1 if X = 0
  • 0 Otherwise
  
space.gif
 ../images/main/bulllet_4dots_orange.gifTruth Tables
Truth tables are a means of representing the results of a logic function using a table. They are constructed by defining all possible combinations of the inputs to a function, and then calculating the output for each combination in turn. For the three functions we have just defined, the truth tables are as follows.
  
space.gif
AND
X
Y
F(X,Y)
0
0
0
0
1
0
1
0
0
1
1
1
  
space.gif
OR
X
Y
F(X,Y)
0
0
0
0
1
1
1
0
1
1
1
1
  
space.gif
NOT
X
F(X)
0
1
1
0
  
space.gif
Truth tables may contain as many input variables as desired
  
space.gif
F(X,Y,Z) = X.Y + Z
X
Y
Z
F(X,Y,Z)
0
0
0
0
0
0
1
1
0
1
0
0
0
1
1
1
1
0
0
0
1
0
1
1
1
1
0
1
1
1
1
1
  
space.gif
 ../images/main/bullet_green_ball.gifBoolean Switching Algebras
A Boolean Switching Algebra is one which deals only with two-valued variables. Boole's general theory covers algebras which deal with variables which can hold n values.
  
space.gif
 ../images/main/bulllet_4dots_orange.gifAxioms
Consider a set S = { 0. 1}
Consider two binary operations, + and . , and one unary operation, -- , that act on these elements. [S, ., +, --, 0, 1] is called a switching algebra that satisfies the following axioms S
  
space.gif
 ../images/main/bullet_star_pink.gifClosure
  
space.gif
If X  S and Y  S then X.Y  S
If X  S and Y  S then X+Y  S
  
space.gif
 ../images/main/bullet_star_pink.gifIdentity
  
space.gif
 an identity 0 for + such that X + 0 = X
 an identity 1 for . such that X . 1 = X
  
space.gif
 ../images/main/bullet_star_pink.gifCommutative Laws
  
space.gif
X + Y = Y + X
X . Y = Y . X
  
space.gif
 ../images/main/bullet_star_pink.gifDistributive Laws
  
space.gif
X.(Y + Z ) = X.Y + X.Z
X + Y.Z = (X + Y) . (X + Z)
  
space.gif
 ../images/main/bullet_star_pink.gifComplement
  
space.gif
 X  S  a complement X'such that
X + X' = 1
X . X' = 0
The complement X' is unique.
  
space.gif
  
space.gif
 ../images/main/bulllet_4dots_orange.gifTheorems
  
space.gif
A number of theorems may be proved for switching algebras
  
space.gif
 ../images/main/bullet_star_pink.gifIdempotent Law
  
space.gif
X + X = X
X . X = X
  
space.gif
 ../images/main/bullet_star_pink.gifDeMorgan's Law
  
space.gif
(X + Y)' = X' . Y', These can be proved by the use of truth tables.
  
space.gif
Proof of (X + Y)' = X' . Y'
  
space.gif
X
Y
X+Y
(X+Y)'
0
0
0
1
0
1
1
0
1
0
1
0
1
1
1
0
  
space.gif
X
Y
X'
Y'
X'.Y'
0
0
1
1
1
0
1
1
0
0
1
0
0
1
0
1
1
0
0
0
  
space.gif
The two truth tables are identical, and so the two expressions are identical.
  
space.gif
(X.Y) = X' + Y', These can be proved by the use of truth tables.
  
space.gif
Proof of (X.Y) = X' + Y'
  
space.gif
X
Y
X.Y
(X.Y)'
0
0
0
1
0
1
0
1
1
0
0
1
1
1
1
0
  
space.gif
X
Y
X'
Y'
X'+Y'
0
0
1
1
1
0
1
1
0
1
1
0
0
1
1
1
1
0
0
0
  
space.gif
Note : DeMorgans Laws are applicable for any number of variables.
  
space.gif
 ../images/main/bullet_star_pink.gifBoundedness Law
  
space.gif
X + 1 = 1
X . 0 = 0
  
space.gif
 ../images/main/bullet_star_pink.gifAbsorption Law
  
space.gif
X + (X . Y) = X
X . (X + Y ) = X
  
space.gif
 ../images/main/bullet_star_pink.gifElimination Law
  
space.gif
X + (X' . Y) = X + Y
X.(X' + Y) = X.Y
  
space.gif
 ../images/main/bullet_star_pink.gifUnique Complement theorem
  
space.gif
If X + Y = 1 and X.Y = 0 then X = Y'
  
space.gif
 ../images/main/bullet_star_pink.gifInvolution theorem
  
space.gif
X'' = X
0' = 1
  
space.gif
 ../images/main/bullet_star_pink.gifAssociative Properties
  
space.gif
X + (Y + Z) = (X + Y) + Z
X . ( Y . Z ) = ( X . Y ) . Z
  
space.gif
 ../images/main/bullet_star_pink.gifDuality Principle
In Boolean algebras the duality Principle can be is obtained by interchanging AND and OR operators and replacing 0's by 1's and 1's by 0's. Compare the identities on the left side with the identities on the right.
  
space.gif
Example
  
space.gif
X.Y+Z' = (X'+Y').Z
  
space.gif
 ../images/main/bullet_star_pink.gifConsensus theorem
  
space.gif
X.Y + X'.Z + Y.Z = X.Y + X'.Z
or dual form as below
(X + Y).(X' + Z).(Y + Z) = (X + Y).(X' + Z)
  
space.gif
Proof of X.Y + X'.Z + Y.Z = X.Y + X'.Z:
  
space.gif
X.Y + X'.Z + Y.Z
= X.Y + X'.Z
X.Y + X'.Z + (X+X').Y.Z
= X.Y + X'.Z
X.Y.(1+Z) + X'.Z.(1+Y)
= X.Y + X'.Z
X.Y + X'.Z
= X.Y + X'.Z
  
space.gif
(X.Y'+Z).(X+Y).Z = X.Z+Y.Z instead of X.Z+Y'.Z
X.Y'Z+X.Z+Y.Z
(X.Y'+X+Y).Z
(X+Y).Z
X.Z+Y.Z
  
space.gif
The term which is left out is called the consensus term.
  
space.gif
Given a pair of terms for which a variable appears in one term, and its complement in the other, then the consensus term is formed by ANDing the original terms together, leaving out the selected variable and its complement.
  
space.gif
Example :
The consensus of X.Y and X'.Z is Y.Z
  
space.gif
The consensus of X.Y.Z and Y'.Z'.W' is (X.Z).(Z.W')
  
space.gif
 ../images/main/bullet_star_pink.gifShannon Expansion Theorem
The Shannon Expansion Theorem is used to expand a Boolean logic function (F) in terms of (or with respect to) a Boolean variable (X), as in the following forms.
  
space.gif
F = X . F (X = 1) + X' . F (X = 0)
  
space.gif
where F (X = 1) represents the function F evaluated with X set equal to 1; F (X = 0) represents the function F evaluated with X set equal to 0.
  
space.gif
Also the following function F can be expanded with respect to X,
  
space.gif
F = X' . Y + X . Y . Z' + X' . Y' . Z
  
space.gif
= X . (Y . Z') + X' . (Y + Y' . Z)
  
space.gif
Thus, the function F can be split into two smaller functions.
  
space.gif
F (X = '1') = Y . Z'
  
space.gif
This is known as the cofactor of F with respect to X in the previous logic equation. The cofactor of F with respect to X may also be represented as F X (the cofactor of F with respect to X' is F X' ). Using the Shannon Expansion Theorem, a Boolean function may be expanded with respect to any of its variables. For example, if we expand F with respect to Y instead of X,
  
space.gif
F = X' . Y + X . Y . Z' + X' . Y' . Z
  
space.gif
= Y . (X' + X . Z') + Y' . (X' . Z)
  
space.gif
A function may be expanded as many times as the number of variables it contains until the canonical form is reached. The canonical form is a unique representation for any Boolean function that uses only minterms. A minterm is a product term that contains all the variables of F¿such as X . Y' . Z).
  
space.gif
Any Boolean function can be implemented using multiplexer blocks by representing it as a series of terms derived using the Shannon Expansion Theorem.
  
space.gif
 ../images/main/bulllet_4dots_orange.gifSummary of Laws And Theorms
  
space.gif
Identity
Dual
Operations with 0 and 1
X + 0 = X (identity)
X.1 = X
X + 1 = 1 (null element)
X.0 = 0
Idempotency theorem
X + X = X
X.X = X
Complementarity
X + X' = 1
X.X' = 0
Involution theorem
(X')' = X
Cummutative law
X + Y = Y + X
X.Y = Y X
Associative law
(X + Y) + Z = X + (Y + Z) = X + Y + Z
(XY)Z = X(YZ) = XYZ
Distributive law
X(Y + Z) = XY + XZ
X + (YZ) = (X + Y)(X + Z)
DeMorgan's theorem
(X + Y + Z + ...)' = X'Y'Z'... or { f ( X1,X2,...,Xn,0,1,+,. ) } = { f ( X1',X2',...,Xn',1,0,.,+ ) }
(XYZ...)' = X' + Y' + Z' + ...
Simplification theorems
XY + XY' = X (uniting)
(X + Y)(X + Y') = X
X + XY = X (absorption)
X(X + Y) = X
(X + Y')Y = XY (adsorption)
XY' + Y = X + Y
Consensus theorem
XY + X'Z + YZ = XY + X'Z
(X + Y)(X' + Z)(Y + Z) = (X + Y)(X' + Z)
Duality
(X + Y + Z + ...)D = XYZ... or {f(X1,X2,...,Xn,0,1,+,.)}D = f(X1,X2,...,Xn,1,0,.,+)
(XYZ ...)D = X + Y + Z + ...
Shannon Expansion Theorem
f(X1,...,Xk,...Xn)
Xk * f(X1,..., 1 ,...Xn) + Xk' * f(X1,..., 0 ,...Xn)
f(X1,...,Xk,...Xn)
[Xk + f(X1,..., 0 ,...Xn)] * [Xk' + f(X1,..., 1 ,...Xn)]
  
space.gif
  
space.gif
  
space.gif

No comments:

Post a Comment